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Abstract

The objective of this paper is to provide a methodology for statistical analysis of 
curricula, whose results give insights, on the one hand, on the relation between fluency in 
each subject of a bachelor’s degree and the overall ability of learners in that degree. On the 
other hand, an ordering relation among the fluency of the different subjects, expected or 
not, emerges from the observed data. We illustrate it with the analysis of a bachelor’s of 
computer science, to which we have applied the Graded Response Model of Item 
Response Theory, along with the implicative graph of Association Rules.
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Introduction

Item Response Theory (IRT) is a framework which emerged from psychometrics in 
the 1950s (Embretson & Reise, 2000; Van der Linden & Hambleton, 1997) and whose aim is 
to provide efficient tools for measuring overall abilities (or other features of individuals, 
called latent traits) through questionnaires. The total score is not simply the sum of each 
item score. Items are assumed to have different degrees of difficulty. Then the estimation 
of the ability of individuals is entangled in the estimation of the difficulty level of the 
items, in the same procedure.

IRT has also been applied to fields such as medicine (Thomas et al., 2013), and topics 
as smoking among adolescents (Hedeker, Mermelstein, & Flay, 2006). Furthermore, it is 
widely used in education to calibrate and evaluate the items of questionnaires as well as 
students’ abilities. In recent decades, educational evaluation has been increasingly using 
techniques based on IRT in order to develop new tests, teaching strategies and skill 
selection (Bodin, 2010; Hamdare, 2014; Johns, Mahadevan, & Woolf, 2006; Rowan et al., 
2001).

The goal of this paper is to provide curriculum designers, of a bachelor’s degree, with 
a methodology for the analysis of their planned curriculum. The application of models of 
IRT to student marks in each subject, allows to describe features of the subjects, such as 
difficulty or discrimination, and give more perspectives for their comparison. It also 
provides with the estimation of the overall ability of students (under the model), and 
allows comparison with their grade point average. We propose that the new pieces of 
information are useful in the process of revision of curricula, in the intensive dialogue 
between educational developers and academic staff, as proposed by O’Neill (2010).

As a complement to IRT, association rules will be used on the same dataset in order to 
understand the mutual relationship among the skills of students in each subject. This topic 
emerged from the market basket analysis, in the search of patterns of items sold frequently 
together. Statistical Implicative Analysis (SIA) allows to detect important rules that can be 
represented as an oriented graph, called implicative graph, and describe the set of relations 
found among the variables, very helpful for the interpretation of eventually underlying 
causality relations.

Khaled, Ghanem, and Couturier (2014) used the implicative graph in order to 
discover the relationship among the success of students in the different subjects of a 
bachelor’s of computer science. This paper improves that methodology by adding the use 
of an IRT model, providing insightful information on how each and every subject 
contributes to the overall ability in the bachelor’s degree.

In Section 2, the Graded Response Model of IRT is introduced and Section 3 reviews 
the basics of quality measures in association rules. Section 4 presents our illustrative 
example, our questions and the answers provided by GRM model and rule mining. 
Finally, our findings are compared with previous research in Section 5.



Analysis of bachelor’s degree curricula through IRT and Association Rules

Ⅱ 5

The Graded Response Model

Test theories try to measure a target latent trait, which is present in the population at 
different levels (a numeric value denoted by letter ). The level is estimated through 
questionnaires (tests). In the Classical Test Theory, the global score of the test is the 
addition of the scores of single items, hence items must be designed carefully in order to 
measure with equal intensity the latent trait. In the IRT setting, it is accepted that the items 
might measure the latent trait with different relevance. Then, the estimation of the latent 
trait of individuals involves a double process, where the relevance of items is estimated in 
the same procedure.

In our application, the population is the set of students of a given bachelor’s degree, 
and the latent trait  is their overall ability within the given discipline. Then each degree’s 
subject is considered to be an item, and the mark of a student at the given subject is the 
score attained in that item.

The simplest models proposed by IRT are for items scoring pass/fail (i.e., binary or 
dichotomous). In general, the probability that a student with ability level  will pass a 
subject i is an increasing function given by the logistic function:

• Rasch (or 1P, one-parameter) model:  exp  
exp  

, where  is the difficulty 

parameter.

• 2P model:  exp   
exp   

, where the new discrimination parameter  

determines the speed of success with regard to .

• 3P model:     exp   
exp   

 where  is the probability of passing 

just by chance (as in multiple choice test without penalty).

Figure 1 (left) shows an example of curve (called, in general, Item Characteristic 
Curves, ICC) for each model. They help to interpret the difficulty and the discrimination 
capacity of each item.

A more realistic situation is to consider items that can score several ordered levels (for 
instance, success, partial success and fail). Ordinal items, Likert scales, scale assessment 
responses, graded test responses, etc., lead to this type of ordered polytomous data. 
Several models have been proposed for these data: the Partial Credit Model (Masters, 
1982), the Generalized Partial Credit Model (Muraki, 1992), and the Graded Response 
Model (GRM) (Samejima, 1969), to which we shall attach:

• GRM. Item  with possible scores 0, 1, …, , is characterized by a discrimination 
parameter  , and then a set of increasing difficulty parameters

( = -∞, , …, ) such that the probability of scoring “level  or more” is given 
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by exp    
exp    

. Figure 1 (right) shows an example of the Item Category 

Characteristic Curves (ICCC) for an item with 4 levels under the GRM.

Figure 1. (Left:) Item Characteristic Curve (ICC) for 3 dichotomous items. Item 
1 (continuous line) has only difficulty parameter = 0. Item 2 (dotted line) has the same 

difficulty parameter, and discrimination parameter = 2 (more discriminatory than Item 

1 for individuals with latent trait values around 0). Item 3 (dashed line) has the same 
difficulty and discrimination parameters, and a guessing parameter = 0.2(a non 

negligible chance of success just by guessing). (Right:) Item Category Characteristic Curve 
(ICCC) for a unique polytomous item with categories 0, 1, 2 and 3, modelled with GRM 
under  = 3,  = -0.5, = 0, = 1. For instance, individuals with low level of latent trait 

( ← 1) are more likely to get categories 0 or 1; individuals with an average level (0 <  <
0.5) are more likely to get categories 2 or 1; and individuals with high level trait ( > 1) are 
more likely to get categories 3 or 2.

In the sequel, the GRM shall be applied to our dataset of students’ marks ―which 
needs to be transformed into three ordered categories labeled “weak”, “average” and 
“strong”― in order to estimate: (1) the global level of proficiency of students in their 
discipline, (2) the difficulty and discrimination of every subject, and (3) the distribution of 
overall students’ ability, in comparison with the distribution of their given marks. We 
discard using a model for continuous data, because it requires a larger amount of data for 
the model fit, and the interpretability of its results becomes more complex, hence less 
practical.
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Association Rules and statistical implicative analysis

Educational research is interested in finding patterns underlying the educational 
processes: the way students learn, how teaching strategies lead to results, and so on. 
Patterns can take the form of segmentation (cluster analysis), explanation (factor analysis), 
prediction or classification (regression models), etc. An interesting and fruitful approach 
is the search for association rules (i.e., potential causes and effects), hidden in the 
complexity of the processes. Statistics turns a set of raw data into a set of rules. Experts 
have the role of turning some of those rules into new pieces of knowledge, disclosing the 
underlying rational arguments and discarding the other ones because of mere chance or 
lack of explanation.

Rules usually link two properties that individuals in the sample may hold or not. 
Association rules emerged from the market basket analysis, linking goods bought jointly 
in market transactions and were efficiently found with the Apriori algorithm (Agrawal & 
Srikant, 1994). Let us denote by  and  a couple of properties ―that individuals can hold 
or not, and also the binary variables corresponding to the properties (value 1 for 
individuals holding the property and 0 otherwise). If we ponder the rule → , we can 
measure the following aspects:

• The support is the proportion of individuals holding both properties  and . A high 
support means a strong association, but it is not a clue of causality, since it is a 
symmetric definition.

• The confidence is the proportion of individuals satisfying  within the group of 
individuals satisfying . A high confidence means that  is likely to occur in 
individuals holding property . It is the most popular and intuitive measure of the 
strength of a rule. However, if property  is too frequent in the sample, a large 
confidence does not necessarily imply that  induces a positive effect on , and the 
rule should not be highlighted.

• When one is interested in detecting whether property  raises the chances of 
property , other measures must be used, such as the lift (the ratio between the 
confidence of the rule and the frequency of the consequent ), or Loevinger’s index 
 (Loevinger, 1947), used in Psychometrics.

A value of lift larger than 1 (or  > 0) means that an individual holding property  
has more chances of holding also property , than other individuals from whom we do not 
know anything. For instance, a lift of 1.5 improves the chances of finding property  by 
50% within individuals already holding property . This value can occur in rules of either 
low or high confidence, so both quality measures should always be reported together.

The implication intensity (denoted by ) is the result of testing whether the value of lift 
is significantly larger than 1 in the whole population. It was introduced in Lerman, Gras, 
and Rostam (1981a, 1981b), and was mainly applied to Mathematics Education and Social 
Sciences (Gras & Totohasina, 1995; Gras et al., 1996; Batanero , Navarro-Pelayo, & Godino, 
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1997; Pantziara, Gagatsis, & Elia, 2009; Fazio, Battaglia, & Di Paola, 2013), but it has been 
growing in methodology and application fields (Gras & Couturier, 2011; Gras, Kuntz, & 
Briand, 2003; Gras, Régnier, Marinica, & Guillet, 2013; Gras, Suzuki, Guillet, & Spagnolo, 
2008). Statistical Implicative Analysis was the given name to a set of tools for cluster analysis 
of variables, association rules, and cluster analysis of association rules (Gras & Kuntz, 
2006). Another approach for the statistical implication that we are not adopting in this 
work, but which is nevertheless worth mentioning, was developed in the line of (Bernard, 
2002; Bernard & Charron, 1996; Bernard & Poitrenaud, 1999).

The computation  is available through software CHIC (Couturier, 2008; Gras, Ag 
Almouloud, Ratsimba-Rajohn, & Couturier, 2017) as well as through the R Statistical 
Software (R Core Team, 2013) by a freely available package called rchic (Couturier, 2017). 
The set of significant rules (i.e., exceeding the given threshold) is depicted as a directed 
graph, showing a neat network of variables (properties) linked by arrows (where 
intensities are color coded, and the value of confidence can be added, see the results of 
Section 4-3). This structure is an opportunity for researchers: some rules can be 
meaningful and found to be the basis of a new empirical hypothesis.

Analysis of a bachelor’s degree curriculum by students marks 
questions and data description

The proposed methodology is the application of IRT and Association Rules to 
students’ marks of subjects conforming a bachelor degree. It shall be illustrated with a 
particular bachelor’s degree, but it can be replicated in any level of studies and discipline, 
working with the corresponding team of experts in the field. The main concerns can be 
summarized by the following questions:

• If we assume an overall ability of students of the bachelor’s degree, how can it be 
estimated from the students’ marks? Does every subject measure that ability in the 
same way?

• How is the ability of students in each particular subject related to the ability at other 
subjects?

In order to answer these two questions, the focus was put on 2nd-year students. First 
year students are starting their degree, and it could be said that their data may contain 
noise, in the sense that students have not very homogeneous backgrounds or 
prerequisites, and some of them can even find out that the particular degree is not what 
they expected it to be. Third year students have defenses, which affects marks in the other 
regular subjects.

The survey was conducted with 2nd-year students of a bachelor’s of Computer 
Science of University A / Mira Bejaia (Algeria). Data were collected from academic courses 
2010-2011, 2011-2012 and 2012-2013. Since all of them have shown very similar results, we 
illustrate our findings with the ones of the last year.
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These students are trained and assessed in the following 15 subjects: Architecture 
(Arch), Data Structures (DStr), Information Systems (IS), Numerical Analysis (NumA), 
Probability and Statistics (PS), Mathematical Logic (MatLog), Signal Processing (SP), 
English 1 (EngFall), Algorithm and Data Structures (AlDStr), DataBases (DB), Operating 
Systems (OS), Languages Theory (LTh), Linear Programming (LP), Software Engineering 
(SwE) and English 2 (EngSpring).

Our raw data is a table with the students’ final marks in each subject (students are 
rows and subjects are columns, see Tab. 1). Marks are in the usual scale from 0 to 20 as 
inherited from the French Education System.

Table 1
First rows and columns of original data (marks of students per module in the usual range [0,20]) 
and their transformation into ordinal data (weak, average and strong).

Arch DStr IS NumA PS MatLog SP EngFall

12MI0051 8.83 13.00 9.33 2.83 5.47 7.67 8.50 15.58

10MI083 3.50 6.75 8.67 1.33 5.67 7.00 1.83 12.92

10MI094 11.00 8.12 7.33 11.50 12.00 12.00 13.67 10.25

12MI0086 10.00 9.12 6.50 6.33 16.00 13.00 11.67 15.17

12MI0060 10.33 6.25 7.00 7.83 16.00 9.50 10.67 15.25

11MI207 9.50 8.81 7.67 7.25 14.70 12.67 14.50 16.25

12MI0051 wea ave wea wea wea wea wea str

10MI083 wea wea wea wea wea wea wea ave

10MI094 ave wea wea ave ave ave ave ave

12MI0086 ave wea wea wea str ave ave str

12MI0060 ave wea wea wea str wea ave str

11MI207 wea wea wea wea ave ave ave str

In order to fit our data to the GRM and obtain conclusions about the connection 
among the overall ability and the different subjects, numeric data were transformed into 
three level ordinal data: weak (marks below 10; fail), average (from 10 and below 15; pass 
with a lower grade), and strong (marks 15 and above; pass with a higher grade). Table 1 
presents the first rows and columns before and after the transformation.

The distribution of students’ grades per subject is shown in Figure 2. It is easy to see 
that Numerical Analysis and Information Systems are the most difficult ones.
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Figure 2. Distribution of categorical marks per subject (left axis). Subjects are ordered by 
numeric average mark (right axis). One can appreciate the least successful subjects NumA 
and IS, and the most successful ones (EngSpring, LTh, EngFall,PS,...).

The usual way of measuring a global score of students is the Grade Point Average, 
i.e., the averaging of marks of all subjects in the academic course (under the coding 
weak=0, average=0.5 and strong=1 in our case). That is what classical test theory would 
obtain as estimation of the overall ability of students. In the following section we study the 
distribution of these global results, along with the distribution of their general ability in 
Computer Science (estimated under the GRM), and the joint distribution of both 
measurements.

The overall ability of computer science students and the 
role of subjects according to the graded response model

Under the paradigm of IRT, the GRM model had a poor goodness of fit under the 
assumption of a difficulty parameter shared by all subjects. However, the fit was adequate 
when that restriction was relaxed.

The Item Category Characteristic Curve (ICCC) of each subject is shown in Figure 3. 
We can see that, even the best students in overall ability ( ≈ 6) have a small probability of 
getting a strong mark in IS; NumA has no student with strong mark, and EngFall and 
EngSpring have flatter curves, meaning that marks in those subjects do not differentiate 
very well among weak or stronger overall ability students.
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Figure 3. Plots of Item Category Characteristic Curve (ICCC) for each response category, for 
all the subjects. We can see for every level of overall ability  , the chances of getting each 
category at each subject.
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The Item Information Curve (IIC) explains, for each value of ability , the precision 
that each item (subject in our case) provides for the estimation of the particular level . 
Students with different, but very low levels of  usually get the same grade in an item. 
Then, that item cannot distinguish between those low levels, and the precision for the 
estimation is very poor. The same situation holds at the high level  side. In the mean 
values, items provide different precision depending on their difficulty and discrimination 
parameters. That is the reason why these curves are bell shaped. Figure 4 shows the 
information curves for all subjects, allowing comparison to how each shows more or less 
information (the inverse of variance or uncertainty) at the estimation of each ability level . 
Items provide more information (precision) at the estimation of levels around the intervals 
[-2, 0] and [1, 3].

Figure 4. Item Information Curve (IIC) of each subject. It shows how precise (or informative) 
each subject is concerning the estimation of the ability of the student, at every 
level . Subjects such as EngSpring, EngFall, IS and PS provide very low precision, at any 
level  . On the other hand, AlDStr shows the largest precision for   in the central range 
[-2, 2], and modules such as DB, LP and DStr are also among the ones providing more 
precision at the estimation of   in the same range.

The Test Information Function (TIF) is the sum of the IICs for all items and it is shown 
in Figure 5. We can see that the totality of subjects (all 2nd-year subjects’ marks) gives a 
more precise estimation of students’ ability level , when its true value lies between -1 and 
3, and less precise estimation otherwise. It means that, for students with low and high 
overall ability, the estimation suffers from more sample variance and it can be considered 
as “less certain”.
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Figure 5. The Test Information Function shows that the estimation of the overall 
ability   of students, from their marks in all subjects is more precise (i.e., has less variance) 
when the real value of   is between -1 and 3.

Finally, the comparison among subjects is shown in Figure 6, where the plots of 
ICCCs are split into categories, reflecting how likely a given result is, for a generic student 
of ability level .

Figure 6. Plots of ICCCs split by category. At every plot (category) we can easily compare 
the probability of getting that category (mark) for all different subjects, given the 
particular ability   of a generic the student.
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Figure 7 shows the distribution of the overall results of students, seen both in the 
classical way as the GPA of the levels (“weak”=0, “average”=0.5, “strong”=1), and in the 
overall estimated ability proposed by our IRT model.

Figure 7. Marginal and pairwise distributions of three ways of measuring the global score 
of students. Numeric.Mark represents the average of original numeric marks of each 
student over all the subjects. IRT.Score is the estimated overall ability   of each student 
under the GRM. Category.Mark corresponds to the global point average, considering the 
categorisation (wea=0, ave=0.5, str=1), i.e., what the classical test theory attributes to each 
student. Correlation is surprisingly high and scatterplots are narrow, suggesting an 
agreement between the three choices.

The IRT fitted model and classical test theory scores have a high concordance: the 
Kendall correlation coefficient is 0.89, and the scatterplot is really narrow, showing that, 
for instance, students with similar global marks correspond to very similar estimated 
overall ability, all along the range of marks (and conversely, all along the range of 
abilities). When comparing IRT scores to original numeric marks, correlation is lower and 
the scatterplot is more spread, but it is natural, since the fit has been conducted with the 
categorical transformed marks, not with the numeric original ones.
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Association and eventual causality among the results of different 
subjects

As a complement to the findings of the preceding section, the aim would be to relate 
the students’ marks among the different subjects by using the association rules of data 
mining. It would be interesting to detect rules with a high level of accomplishment (i.e., 
confidence), but also rules showing premises with significant effect over conclusions. 
Whether there is causality or just chance is an ontological question that researchers in 
education must try to discern using epistemological reasoning. 

Our target rules are of the type “students with (strong/average/weak) marks in subject A 
do generally have (strong/average/weak) marks in subject B”, and also of the kind “getting 
(strong/average/weak) marks in subject A improves significantly the chances of getting 
(strong/average/weak) marks in subject B”. Even if the antecedent raises the chances from 
“minute” to “small”, those pieces of information are very relevant.

According to our sample of moderate size, we have used the classical implication 
intensity under the Poisson model, as in Khaled et al. (2014). In order to obtain the rules, 
we have defined binary variables such as Arch.wea, meaning a student gets a weak mark 
in subject Arch (for Architecture), and so on. The R package rchic (Couturier, 2017) was 
used in order to produce the relations shown in Fig. 8, by choosing a rather conservative 
threshold level of 0.99 (it is equivalent to a 1% significance level of a test for rejection of 
independence).

Figure 8. Implicative graph of rules exceeding intensity 99%. Confidence is marked in every 
arrow. Weak level produces more rules than average or strong level. This information 
helps specialists to understand relations among success in subjects, and assist them in 
decision taking.

As an example of interpretation, the displayed rule EngFall . wea→ SwE .wea  
suggests some statistically significant effect of “having weak result in EngFall” over 
“having weak result in SwE”, which is very far from being pure chance and that should be 
analyzed further. The high confidence of the rule can also be easily interpreted (84.85% of 
students with weak results in EngFall have been found to have also weak results in SwE).

A priori, some competencies can only be gained after some other ones have been 
seized. The dataset may reflect some of these “expected” ordering relations, or some other, 
unexpected. The researcher has the role of either finding sense or discarding the 
unexpected relationship that has arisen from the data analysis.
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Almost every significant rule involves subjects at the same level of results (weak, 
average or strong). It is somewhat expected, as it is related to an existing correlation 
among marks. Only the rule MatLog.str → Arch.ave describes that having good results in 
Mathematical Logic raises significantly the chances of having only average results in 
Architecture.

Another interesting remark is that the structure of the rules involving subjects with 
weak results is far richer than the one corresponding to subjects with average or good 
results. Threshold can be reduced to level 0.95 in order to get the implicative graph of the 
5%-significant rules. On the one hand, it displays many more relations among subjects and 
levels ―which might be of interest to specialists―, but on the other hand, the risk of 
displaying a rule which is the product of pure chance is higher. The following implications 
have been found to be relevant to our colleagues:

• EngFall . str→EngSpring . str: even when the confidence around 60% is not high, the 
intensity ensures that a strong result in English 1 (Fall) significantly raises the 
chances of getting strong results in English 2 (Spring).

• DStr .ave→ AlDStr . ave and AlDStr .wea→DStr . wea: Algorithm and Data Structures 
is the continuation of Data Structure. Both rules have a confidence around 75%. For 
students with average results, the implication follows the ordering among subjects. 
However, students with weak results produce the rule in the reverse way.

• SwE .ave→DB . aveand DB .wea→ SwE . wea: here we have a similar situation among 
the subjects of DataBases and Software Engineering, which are based on conception 
― the first one on project conception and the second one on software conception.

• AlDStr .wea→DB . wea : we can interpret that being weak in Algorithm and Data 
Structures induces to be weak in DataBases, because this subject involves the use of 
SQL language, which is very close to the algorithmic of Algorithm and Data 
Structures.

Conclusion

We have analyzed the marks obtained by 2nd-year students of a bachelor’s of 
Computer Science in order to show a methodology that combines IRT and Association 
Rules in order to provide with two related but clearly different pieces of information 
concerning an educational problem. First, the fit of the GRM model of IRT has provided:

• How student marks make up the abstract concept of overall ability in this particular 
discipline, by an acceptable fit to the Grade Response Model of IRT (see Section 4.2).

• How difficult each subject is, as a function of every possible latent overall ability a 
student may have. This difficulty is not as easy as a single parameter, since there are 
three levels of result (weak, average and strong), and we can interpret it from the 
plots of the Item Characteristic Category Curves in Figure 3. In our example, 
Numerical Analysis and Information Systems are the most difficult ones, but the 
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difficulty of Software Engineering (with ICCCs shifted to right with respect to most 
of other subjects) can also be appreciated. On the other hand, English 2 is clearly the 
easiest subject, followed by English 1, Signal Processing and Language Theory.

• How accurate every subject is at estimating the latent overall ability of the student. 
In our example, English 1 and English 2 show a low discrimination power, since in 
a wide range of ability levels two of the three possible outcomes are very likely to 
happen. This is found on the ICCC plots when curves are very smooth. This 
phenomenon also occurs, but in a less pronounced form, to Probability and Statistics, 
Signal Processing and Language Theory. The rest of the modules discriminate much 
better the latent overall ability of students, as one can see in Figure 3.

• How accurate the complete course - seen as the list of all subjects - is at the task of 
estimating the latent overall ability of the student (see Figure 5).

• How student results are distributed, according to the latent overall ability, and how 
it is related to the global point average (see Figure 7). In this case, there is an 
important agreement in the sense that marks and estimated ability level do correlate 
very well. 

Second, the use of association rules has produced Figure 8, which allows us to say that:

• Most highlighted rules connect subjects mastered at the same level: weak results in 
some subjects produce an effect of weak results in other subjects, and similarly for 
average, and for strong results.

• Indeed, there is a more complex structure of rules involving subjects with weak 
results. This ordering should be considered by teachers and curriculum designers 
in order to analyze contents relations among the subjects.

• Data Structures is the only subject that produces rules in the three groups of student 
results: (1) students with strong results have larger chances to have strong results at 
Mathematics and Logics; (2) students with average results raise their chances to 
have average results in Algorithms and Data Structures, and (3) students with weak 
results are more likely to have weak results at Software Engineering.

It is important to mention that a very strict level of 0.99 was used, that could have 
been reduced to 0.95, producing a larger number of implications. However, by the nature 
of the implication intensity ― as a hypothesis test ― researchers should use it, either as a 
way of testing assumptions made a priori or as a means of finding surprising facts that 
should be analyzed further, questioned, and tested on a larger sample.

Teachers are strongly advised to analyze their students’ marks by these methods in 
order to determine the difficulty of the subjects and to review their contents if necessary, 
as well as to improve courses or examination subjects, for example. Furthermore, these 
two methods can be used to refine the subjects of a specialty, or to assist in choosing 
among optional training subjects. We claim this methodology can be exported to any type 
of study degree (college, bachelor’s, masters) and domain (Sciences, Engineering, 
Medicine, Social Sciences, Law, etc.) in order to analyze the relationship among subjects 
and the knowledge domain, and provide specific valuable information that teachers, 
curriculum designers and administrators can handle for better assisted decision making.
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